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Abstract. We have developed a new point-ion pseudizing potential appropriate for the s-p
bonded metals. The electron-ion contribution to the effective potential has been caleulated
self-consistently. The essential feature of this description is the occurrence of the true field
rather than a coulombic form in the pre-asymptotic region. The orthogonalizing con-
tributions that arise from repulsive s scattering and attractive p scattering are calculated in
terms of delta functions of strengths suitable for achieving the necessary s and p pseudizations
respectively. The new potential is successfully applied to calculate a number of solid and
liquid state properties of certain s-p bonded systems.

1. Introduction

Itis now nearly three decades in which the pseudopotential theory has been a formidable
tool in the investigation of a variety of metallic properties. For many simple metallic
systems some specific forms of pseudopotentials [1] have proved to be decisive in
calculating only a very few properties. At alaterstage there has been indeed a significant
advance in developing broad-based model potentials which essentially embrace the
refined and more general aspects of the underlying microscopic properties in a self-
consistent fashion [2-4]. These aspects consider a global appeal including non-locality,
energy dependence and other relevant refinements in the electron-ion interaction. In
other words, these attempts have been pushing forward the frontiers of the pseudo-
potential framework to match those generated by the non-perturbative approach {5].
This development is of course highly desirable. However, in any application of these
refined pseudopotentials, problems arise owing to the complications inherent in many
of them.

On the other hand we have noticed that, when a certain property is consistently
reproduced by a particular form of pseudopotential, another relevant property may be
poorly reproduced by the same potential—this is a very common experience in the
appiication of all pseudopotentials whatever the basis of development. However, the
degree of such anomalies may be reduced to a great extent, e.g. by employing full non-
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localities in the electron—ion interaction for many systems; this is primarily because the
non-local pseudopotentials are proposed generally within the context of the theory of
metals [6]. Now, since these types of pseudopotential consist of a number of parameters,
itisobvious that a certain degree of uncertainties always exists in the relevant parametric
procedure. Owing to these possible uncertainties and some other complexities in the
non-lecal pseudopotential we still believe that the situation, particularly in the s—p
bonded metals, can be improved to a greater extent, even working within the local
pseudopotentials provided that we pay more attention to the electronic structures of
these systems.

In this respect we refer to a recent work by Hoshino and Young [7] where a series of
properties of Li has been successfully calculated by employing a point-ion pseudo-
potential. This potential is generated in such a way that the first part of it is calculated
within a full self-consistent field potential and the second part contains a repulsive &
potential treated at the origin; the latter part pseudizes the first part through s scattering
alone. Now for the s—p bonded systems we need to extend the pseudizing contribution
such that both the s and the p scatterings are pseudized properly with the core.

With this picture in mind we write the effective psendopotential such that the
self-consistent field potential contributes to the first part, the relevant exchange and
correlation contribution being calculated in the local density functional approximation
[8]. The final contributions that arise from the cancellation of the s and p wave scattering
with the respective core are expressed in terms of the appropriate functions; these terms
essentialiy take care of the orthogonalization effects. Subsequently to check the validity
of this potential we have calculated a number of metallic properties for certain s—p
bonded systems. The application of this potential has been found to be fairly successful
in calculating these properties on a single footing.

The layout of the paper is as follows: in section 2 we present a brief description of
the construction of the effective potential; in section 3 we present the formmulation of the
quantities that we plan to calculate; in section 4 we present and discuss the results and
finally we make some concluding remarks in section 5.

2. The new potential and reievant formulation

Following Hoshino and Young [7] we write the effective local pseudopotential for a
metal of atomic number Z as

o(r) = vu(r) + 0. (1) + Do (7). (1)

The first term is the Hartree potential due to a nucleus and its core electrons; after spin
averaging, this term can be written as

Z o v,
Dy () r+zL=EO e @)
Here —Z/r is a coulombic potential due to a nuclear charge of Z and the integration
represents an electronic Hartree field arising because of the core electrons; this inte-
gration in principle can be expressed in closed form for any metallic system, However,
we calculate this term using the self-consistent field approximation [9]. The exchange
and correlation term v, (r) representing the exchange—correlation potential between
the core and valence electrons is calculated in the local density functional approximation
[8]; in the present case we adopt the expression due to Hedin and Lundqvist [10].
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The first term v,,,(r) in equation (2) is the potential generated by orthogonalization
of the valence wavefunctions with the core orbitals. Now the appearance of any non-
zero amplitude at the origin is due to this core orthogonalization. For a system in which
the orthogonalization is affected by the s component of the wavefunctions alone, the
relevant orthogonal contribution is represented by a & function repulsion at the core
[7, 11}, but for an s—p bonded system this (orthogonalization) is affected by both the s
and the p wave scattering and, therefore, the total orthogonalization is now represented -
by (for details see appendix A)

Dorno(r) = ad(r) + BV26(r) (3)

where the first term takes care of the s orthogonalization and the second term that arising
predominantly from the p waves; any residual orthogonalization due to the s waves is
also taken care of by the second term. Here « and B are the parameters signifying the
strengths of the s and s—p wave scatterings, respectively, and these are obtained by the
uvsual fitting procedure (for further remarks see section 5).

Now for many practical purposes we need the Fourier transform (Fr) of the effective
potential. Primarily the FT of the pseudopotential v(qg) is used to calculate the effective
pairwise potential

00)= "+ s | 0 g ey (@)
where z is the valence of the metal concerned. The wavenumber characteristic F(g) is

Flg) = (g*/4m)[1/e(g) ~ 1]0*(g)- )
In the present investigation, v(g) has the form (for details see appendix B)

(q) = vie(q) + & — Bg>. (6)

Here the screening function £(g) is calculated in terms of the Lindhard function y4(g)
and the Ichimaru—Utsumi [12] local field factor; the latter satisfies the self-consistent
conditions imposed by the compressibility sum rule and the short-range correlation
requirement.

3. Applications of the point pseudizing potential

In this section we shall describe certain applications of the new pseudopotential whose
FT is given by equation (6); the ionic part v,,,(q) is calculated simply by taking the Fr of
the ionic potential r;,,(r) obtained self-consistently via the modified Herman—Skillman
program [13]. When calculating the solid and liquid state properties the density of a hot
. crystal is assumed to be the same as that of the melting state.

3.1. Cores and related properties

Itis now quite well established [14] that a hard-sphere model can describe the liquid state
properties of simple metals and their alloys fairly well. In calculating these properties,
however, we need the best possible values of the hard-sphere ingredients n and 0. There
are various schemes [14] for determining these hard-sphere ingredients. In the present
investigation we estimate these values from the consideration that the difference
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between the relevant pair potential and its minimurm value is just equal to the kinetic
energy of a free particle. The standard variational method [15] for defining the hard-
sphere ingredients can safely be replaced by the thermodynamic argument proposed by
Ashcroft and Langreth [16]. According to their proposal,

@(0) = Puia(r) = T (7

where @i, (7) is the minimum value of @(r). The value of o thus estimated can be used
to calculate the packing fraction # for a particular density n via the relation n =
(x/6)nc®. This optimum value of # is used to calculate the excess entropy per ion [17]:

ASo/Nk = —n(4 — 3n)/(1 - )~ €]

The determination of AS,,/Nk is an accuracy test for the proposed pseudopotential.
Determination of the Einstein temperature O is also quite supplementry to that of
calculating the excess entropy. Following Hasegawa and Young [18] we write

#? 1823 x 107 « (d?¢ 2dg
= — E 2 = E it of
O = gpg &, (V') 07 ,,ﬂ(drz *7 dr), ©

where R is a lattice vector of the underlying lattice and W is the atomic weight of the
element concerned.

3.2. The tail and the isothermal compressibifity

We analyse the accuracy of the tail of the calculated pair potential by estimating the
isothermal compressibility x, of the systems. In fact we compute the zero-argument
structure factor S(0) == nk Ty, to check the size of the tail. Following the standard Weeks—
Chandler-Andersen (wca) [19] method it is customary to segregate the pair potential
into the core and tail parts [7]. By using this method the wca diameter of the specimen
can be written as [20]

@ (owea)/kT = Inf{[—20wca @i (Owea /KT + Y + 2/~ Owca !
X (Owen /KT + Y + 2 10)

where Y = [8{In[gn(r)]}/3(In )] ypes + 0s 8us(r) being the hard-sphere radial dis-
tribution function defined by oywca. Using the Percus-Yevick approximation, ¥ can be
written in a closed form [7]. Thus the solution of the transcendental equation (10) gives
the wCa diameter oy, ; this value is then used to calculate 5,,(0), the zero argument of
the hard-sphere structure factor. Finally $,,(0) expressed within the random-phase
approximation is given by

S7ba(0) = S5!H0) + 571(0) (11)
where
§71(0) = (n/kT ). (0).

Here ,(0) = [, @ (r)4nr? dr, @(r) being the tail of the pair potential within the wca
approximation. It is relevant to mention here that, owing to the inclusion of softness,
Owea is naturally greater than the hard-sphere diameter o.
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4. Results and discussion

We have presented the calculated results for Na and Mg in tables 1 and 2 respectively;
the results for some other s—p bonded metals are available from the present authors.
From table 1 we note that, for Na, most of the desired thermodynamic properties are
reproduced consistently by fitting a = 68.22 au and 8 = 27.30 auin the form factor, The
results in table 2 for Mg with (a, B) = (58.65, 13.10) show a similar trend. Here we may
mention that the process of determining the optimal values of & and § is somewhat
tedious. Any small change in these parameters may substantially change the desired
physical properties, indicating the sensitivity of the orthogonalization relevant to the
form factors.

The consistent reproduction of the hard-sphere ingredients (#, o) reveals a great
degree of accuracy in the profile of the pair potentials calculated by using the present
pseudopotential. The hard-sphere ingredients thus determined have been used to cal-
culate the electrical resistivity p, and excess entropy AS,./Nk; the results for liquid Na
and Mg are presented in the tables. These results reveal that the repulsive part and
the minimum of the pair potential are consistently reproduced. The random-phase
approximation values of the zero-argument structure factor Sgp,(0) scem to be fairly
consistent with the experimental results and this implies that the tail of the pair potential
for the s—pbondedsystemis alsoconsistently reproduced by the present pseudopotential.
From these observations we may remark at this point that the overall profile of the
calculated pair potentials is correctly reproduced. From a comparison of the present
results with those calculated by using the Ashcroft pseudopotential [21] the greater
success of the present potential in calculating the liquid properties is evident.

A similar trend is noticed in the solid state results, e.g. the Einstein temperature Gy
and band gap v, for the systems concerned. To avoid any confusion we should mention
here that an experimental band gap v, has a specific value on a particular crystaliographic
plane and so the comparison may lose its validity to some extent. So far as the Einstein
temperature is concerned, it can only be dccurately calculated provided that the radial
and tangential forces, as represented, respectively, by the first and second derivatives
of @ (see equation (9)) are correctly reproduced. The calculated results show fair
consistency in comparison with the values obtained by using the other established
pseudopotentials.

Let us now analyse the appealing features generated by the present potential in
comparison with those generated by other established potentials, e.g. the Ashcroft
potential. In any empty-core or nearly-empty-core potential the point-ion part is usually
a purely coulombic potential, indicating that the valence electrons see a fully screened
core at all separations. This approximation, even though it works quite well for certain
ideal cases, fails to reproduce the reality of the physical aspects exhibited in any electron
screening. Ideally the valence electrons in the close vicinity of the respective nucleus see
all the protons without any appreciable screening and on the other hand electrons from
large separations experience oniy the positive core having charges just equal but opposite
to the valence ¢lectrons. These practical features are fully generated by the present
point-ion part comprising the self-consistent Hartree and the exchange—correlation
contributions in the total potential.

In figures 1(a) and 2(a) are shown the pseudopotential form factors for Na and Mg
calculated by using the present point-ion pseudizing potential. Since the asymptotic
behaviours of all the hitherto-known pseudopotentials are similar, we obviously notice
an identical feature in the long-wavelength region of all the corresponding form factors.
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Figure 1. (a) Screened and normalized pseudopotential form factors for Na: —, present
form factor with the strength parameters & =68.222u and f=2130au; —--
Asheroft potential with empty-core radivs 7, = 1.67 au; ——, Ashcroft potential withr, =
1.75 au. (b) The pair potentials g(r) calculated using the form factors shown in {a): the
curves have the same meanings as those in (a). (c) Unscreened ionic form factors: —«—,
present results; — — —, Ashcroft form factor with r, = 1.75 au; ——, purely coulombic form
factor. All these results correspond to the melting point (7 = 371 K) number density 2 =
3.583 X 107? au for Na.
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Figure 2. (a) Screened and normalized pseudopotential form factors for Mg; — -—, present
form factor with strength parameters & = 58.65 auand 8 = 13.10 au; —-, Ashcroft poten-
tial with empty-core radius ¥, = 1.39 au; ~ —~ —, Asheroft potential with r. = 1.44 au. (b) The
pair potentials @(r) calculated using the form factors shown in figure (4): The curves have
the same oicanings as in (a). (¢} Unscreened ionic form factors: —-—, present results: ~ —
-, Ashcroft form factor with 7, = 1.39 au; ——, purely coulombic form factor. All these

results correspond to the melting point (T = 923 K) number density » = 5.836 x 10~* au for
Mg,
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However, differences in the large ¢ region appear because of the way in which the
valence electrons view the ion core; this is certainly obvious. In this respect we may
mention that one of the striking aspects of the pair potentials, as shown in figures 1(b)
and 2(b), is the significantly deep minimum associated with each of them. This feature
may be a consequence of the differences between the profiles of the present and other
ionic potentials appearing in the metallic range of separation r. This is reflected in the
ionic bare form factors, as shown in figures 1(c) and 2(c), calculated using the various
pseudopotentials. At this stage it is not, however, clear how much these deep minima
are due to the differences between the asymptotic behaviour of the ionic potentials and
the relevant orthogonalization contributions.

5. Concluasions

In the present attempt we have developed a local pseudopotential suitable for the s—p
bonded systems. With a proper choice of the two strength parameters a and § we have
been able to calculate successfully a number of properties relevant to the solid and liquid
phases of a few of these systems. In the light of the calculated results we would like to
make the following concluding remarks.

(i) In the first place, the present pseudopotential is local but consists of the full
electron-ion interaction; the latter is absent in most of the hitherto-known local
pseudopotentials for the s-p bonded systems. The essential feature of this description is
the occurrence of the true field rather than a coulombic form.

 {ii) The full seif-consistency inherent in the ionic part of the pseudopotential ensures
exact description of the electron screening. This feature on the contrary represents an
ideal band description essential for any electron—ion interaction.

(ifi) The equally good core and tail of the pair potential imply that the interatomic
interactions are correctly represented by the present pseudopotential. These features
indicate that the deep minima associated with the pair potentials do not have any
unwanted effect on the thermodynamic properties of the systems concerned. However,
any other relevant property probing critically the effects due to the details of the potential
well remains to be investigated.

(iv) Despite all its appealing features, the pseudopotential form factor calculated by
using the present point-ion psendizing potential has two difficult features: one arising
from the constant term «, for in this case v(g) does not tend to zero as g — = and the
other js related to the g’-dependent term in v(q). These features, however, will not
affect any property involving the electron scattering by the Fermi surface. Nonetheless,
global properties, e.g. the free energy, may be wrongly reproduced by the present
pseudopotential unless the said features are neutralized by some relevant factors. Some
appropriate corrections may be made to these difficulties following the recent work by
Das and Joarder [28].

(v) At this stage we should mention that the strength parameters a and 8, even
though at present treated as disposable quantities, may be calculated in terms of any -
first-principles method; the latter may be achieved by considering bound-state properties
of the elemental systems. At that stage it will be appropriate to check for further validity
of the proposed values of « and 8, ¢.g. by fitting these to atomic properties to, say,
atomic levels of the relevant atoms or ions.

Work considering the above points is in progress.
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Appendix A. Psendizing potential based on the § function

In terms of the so-called jellium model [1] a metal is described as a collection of electrons
distributed uniformly in a compensating positive-charge background. Now, if the back-
ground is replaced by a collection of discrete ions, the distributed electrons will find
themselvesin a different average field. This differing situation introduces a perturbation
in the electron—ion interaction. If this perturbation is weak, we may represent it by a
pseudopotential »,,. Thus in terms of the given jonic potential v;,, the form factor of the
effective potential is written as

{klogs + Vien |k + g} = (k| 0ps [k + ) + (kl0ion |k + @) = 04 () + Vion(9)- (A1)
En general we may write
1 «©
(klogs [k + gy =+ 2 (2 + 1)n;py(cos 6) (A2)
=0
where the notation has its usual meanings. We may write
Kok + @) = [ 0,,0) explig ) . (A3)
If we consider v, to cancel s scattering alone, then
vhs(r) = ad(r) (A4)
because then
f v5s(r) explig-r) dr=a. (AS5)

Here o is a strength parameter and in principle it depends on energy via k, but we have
not explicitly shown this here.

On the other hand, if v,(r) is to cancel the p wave and any residual s wave scattering,
then

v5(ry = BY25(r). (A6)
Thus for effective s—p scattering we may write
v (r) = (@ + BV)S(r) (A7)

which is essentially the total orthogonalization contribution v, given by equation {3)
in the main text.
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Appendix B. Form factor of the effective pseudopotential

The effective psendopotential is
D(I‘) = Vion (l") + Dps(r)
where

Vioa(r) = 0u(r) + 0 (r)

(B1)

(B2)

as defined in equation (1). Combining equations (A7) and (B2), and finally taking their

FT, we have

D(Q) = Dion(‘?) + Ups(Q)'
Here

vpl(q) = j ad(r) exp(ig-r)dr + j BY26(r) explig - r) dr
where, as already defined,
f ad(r) exp(ig-r)dr=a.

In the present case we assume SV23(r) to be spherically symmetric and so

2 .
f BV25(r)exp(ig- r) dr= J- (1 d ) ﬂ?;f;) 4mr? dr = —Bg°.

rdr?
Thus the Fr of 0(r) is given by

v(g) = via(q) + o — B¢?
which is essentially equation (6) in the text.
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